Life-Sized Environmental Research: Outdoor StreamLab

To develop science-based approaches for restoring the nation's degraded waterways, there is a critical need to understand the underlying physical, biological, and chemical mechanisms that govern stream processes and their response to natural and human disturbances. The Outdoor StreamLab (OSL) is a premier research facility developed by SAFL and the National Center for Earth-surface Dynamics (NCED) at the University of Minnesota in the heart of downtown Minneapolis. OSL brings together river scientists, engineers, and managers to explore river flow and riparian zone ecology. 

We welcome projects that make use of our unique stream research facility. Please contact the OSL Research Manager Jessica Kozarek (jkozarek@umn.edu or 612-624-4679) for more information.


OSL panorama

The Outdoor StreamLab is uniquely equipped to:

  • Quantify physical, chemical, and biological processes from microscopic to reach scales with high-resolution laboratory-quality measurements
  • Conduct hydrological and ecological field-scale experiments under controlled conditions
  • Impose and repeat steady and unsteady inlet hydrographs, including overbank floods
  • Provide verification for advanced computational models
  • Host highly visible formal and informal education

Watch a video about the Outdoor StreamLab:

            


Peer-reviewed publications:


Khosronejad, A., J.L. Kozarek, P. Diplas, C. Hill, R. Jha, P. Chatanantavet, N. Heydari, and F. Sotiropoulos (2018) Simulation-based optimization of in-stream structures design: rock vanes. Environmental Fluid Mechanics, 18:695-738.

Tomasek, A. J.L. Kozarek, M. Hondzo, N. Lurndahl, M.J. Sadowsky, P. Wang, and C. Staley (2017) Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian areas.  Water Resources Research 53:6523-6538.

Hill, C., J. Kozarek, F. Sotiropoulos, and M. Guala (2016) Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine. Water Resources Research, 52(2):860-879.

Palmsten, M.L., J.L. Kozarek, and J. Calantoni (2015). “Video observations of bed form morphodynamics in a meander bend.” Water Resources Research, 51, doi:10.1002/2014WR016321.

Kui, L., J. C. Stella, A. Lightbody, and A. C. Wilcox (2014). Ecogeomorphic feedbacks and flood loss of riparian tree seedlings in meandering channel experiments, Water Resour. Res., 50, 9366–9384, doi:10.1002/2014WR015719.

Khosronejad, A., Kozarek, J. L., Palmsten, M. L., and Sotiropoulos, F. (2015).  “Numerical simulation of large dunes in meandering streams and rivers with in-stream structures.”  Adv. in Wat. Resour., 81:45-61.

Khosronejad, A., Kozarek, J. L., and Sotiropoulos, F. (2014). “Simulation-based approach for stream restoration structure design: model development and validation,.” Journal of Hydraulic Engineering, 140(7): 1-16.

Plott, J.R., P. Diplas, J. Kozarek, C. L. Dancey, C. Hill, F. Sotiropoulos (2013). “A generalized log-law formulation for a wide range of boundary roughness typically encountered in natural streams.”  JGR Earth Surface. 118(3):1419-1431

Guentzel, K.S., M.J. Sadowsky, M. Hondzo, B.D. Badgley, J. C. Finlay, J.L. Kozarek (2014) Measurement and modeling of denitrification in sand-bed streams of varying land use.  Journal of Environmental Quality. 43(3): 1013-1023.

Legleiter, C. J., & B. T. Overstreet (2014). “Retrieving river attributes from remotely sensed data: An experimental evaluation based on field spectroscopy at the Outdoor Stream Lab.” River Research and Applications, 30(6):671-684.

Chapman, J., M. M. Blickenderfer, B. N. Wilson, J. S. Gulliver & S. Missaghi (2013). Competitions and Growth of Eight Shoreline Restoration Species in Changing Water Level Environments.” Ecological Restoration, 31(4) 359-367.

Kang, S., & F. Sotiropoulos  (2012). “Numerical modeling of 3D turbulent free surface flow in natural waterways.” Advances in Water Resources, 40, 23–36.

Kang, S., & F. Sotiropoulos (2012). “Assessing the predictive capabilities of isotropic, eddy viscosity Reynolds-averaged turbulence models in a natural-like meandering channel.” Water Resources Research, 48(6), W06505.

Nowinski, J. D., M. B. Cardenas, A. F. Lightbody, T. E. Swanson, & A. H. Sawyer (2012). “Hydraulic and thermal response of groundwater-surface water exchange to flooding in an experimental aquifer.” Journal of Hydrology, 472-473(2012), 184–192.

Kang, S., A. F. Lightbody, C. Hill & F. Sotiropoulos (2011). “High-resolution numerical simulation of turbulence in natural waterways.” Advances in Water Resources, 34, 98-113.

Kang, S. & F. Sotiropoulos (2011) Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: Insights gained via numerical simulation. Journal of Geophysical Research-Earth Surface, 116.

Nowinski, J. D., M. B. Cardenas & A. F. Lightbody (2011). “Evolution of hydraulic conductivity in the floodplain of a meandering river due to hyporheic transport of fine materials.” Geophysical Research Letters, 38.

Merten, E. C., W. D. Hintz, A. F. Lightbody & T. Wellnitz (2010). “Macroinvertebrate grazers, current velocity, and bedload transport rate influence periphytic accrual in a field-scale experimental stream.” Hydrobiologia, 652, 179-184.

Merten, E. C., J. Loomis, A. Lightbody & D. J. Dieterman (2010). “Effects of Six-Hour Suspended Sediment Treatments on White Sucker (Catostomus commersoni) and Smallmouth Bass (Micropterus dolomieu) in an Artificial Stream.” Journal of Freshwater Ecology, 25, 539-548.

Rominger, J. T., A. F. Lightbody & H. M. Nepf (2010). “Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics.” Journal of Hydraulic Engineering-ASCE, 136, 994-1002

Wilcock, P. R., Orr, C. H., and Marr, J. D. (2008). “The need for full-scale experiments in river science.” Eos, Transactions American Geophysical Union, 89(1), 6–6.